/* Based on SAMBA 7ce1356c9f571c55af70bd6b966fe50898c1582d. very efficient functions to manage mapping a id (such as a fnum) to a pointer. This is used for fnum and search id allocation. Copyright (C) Andrew Tridgell 2004 This code is derived from lib/idr.c in the 2.6 Linux kernel, which was written by Jim Houston jim.houston@ccur.com, and is Copyright (C) 2002 by Concurrent Computer Corporation This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #define IDTREE_BITS 5 #define IDTREE_FULL 0xfffffffful #if 0 /* unused */ #define TOP_LEVEL_FULL (IDTREE_FULL >> 30) #endif #define IDTREE_SIZE (1 << IDTREE_BITS) #define IDTREE_MASK ((1 << IDTREE_BITS)-1) #define MAX_ID_SHIFT (sizeof(int)*8 - 1) #define MAX_ID_BIT (1U << MAX_ID_SHIFT) #define MAX_ID_MASK (MAX_ID_BIT - 1) #define MAX_LEVEL (MAX_ID_SHIFT + IDTREE_BITS - 1) / IDTREE_BITS #define IDTREE_FREE_MAX MAX_LEVEL + MAX_LEVEL #define set_bit(bit, v) (v) |= (1<<(bit)) #define clear_bit(bit, v) (v) &= ~(1<<(bit)) #define test_bit(bit, v) ((v) & (1<<(bit))) struct idtree_layer { uint32_t bitmap; struct idtree_layer *ary[IDTREE_SIZE]; int count; }; struct idtree { struct idtree_layer *top; struct idtree_layer *id_free; int layers; int id_free_cnt; }; static struct idtree_layer *alloc_layer(struct idtree *idp) { struct idtree_layer *p; if (!(p = idp->id_free)) return NULL; idp->id_free = p->ary[0]; idp->id_free_cnt--; p->ary[0] = NULL; return p; } static int find_next_bit(uint32_t bm, int maxid, int n) { while (nary[0] = idp->id_free; idp->id_free = p; idp->id_free_cnt++; } static int idtree_pre_get(struct idtree *idp) { while (idp->id_free_cnt < IDTREE_FREE_MAX) { struct idtree_layer *pn = talloc_zero(idp, struct idtree_layer); if(pn == NULL) return (0); free_layer(idp, pn); } return 1; } static int sub_alloc(struct idtree *idp, const void *ptr, int *starting_id) { int n, m, sh; struct idtree_layer *p, *pn; struct idtree_layer *pa[MAX_LEVEL+1]; unsigned int l, id, oid; uint32_t bm; memset(pa, 0, sizeof(pa)); id = *starting_id; restart: p = idp->top; l = idp->layers; pa[l--] = NULL; while (1) { /* * We run around this while until we reach the leaf node... */ n = (id >> (IDTREE_BITS*l)) & IDTREE_MASK; bm = ~p->bitmap; m = find_next_bit(bm, IDTREE_SIZE, n); if (m == IDTREE_SIZE) { /* no space available go back to previous layer. */ l++; oid = id; id = (id | ((1 << (IDTREE_BITS*l))-1)) + 1; /* if already at the top layer, we need to grow */ if (!(p = pa[l])) { *starting_id = id; return -2; } /* If we need to go up one layer, continue the * loop; otherwise, restart from the top. */ sh = IDTREE_BITS * (l + 1); if (oid >> sh == id >> sh) continue; else goto restart; } if (m != n) { sh = IDTREE_BITS*l; id = ((id >> sh) ^ n ^ m) << sh; } if ((id >= MAX_ID_BIT) || (id < 0)) return -1; if (l == 0) break; /* * Create the layer below if it is missing. */ if (!p->ary[m]) { if (!(pn = alloc_layer(idp))) return -1; p->ary[m] = pn; p->count++; } pa[l--] = p; p = p->ary[m]; } /* * We have reached the leaf node, plant the * users pointer and return the raw id. */ p->ary[m] = (struct idtree_layer *)ptr; set_bit(m, p->bitmap); p->count++; /* * If this layer is full mark the bit in the layer above * to show that this part of the radix tree is full. * This may complete the layer above and require walking * up the radix tree. */ n = id; while (p->bitmap == IDTREE_FULL) { if (!(p = pa[++l])) break; n = n >> IDTREE_BITS; set_bit((n & IDTREE_MASK), p->bitmap); } return(id); } static int idtree_get_new_above_int(struct idtree *idp, const void *ptr, int starting_id) { struct idtree_layer *p, *pn; int layers, v, id; idtree_pre_get(idp); id = starting_id; build_up: p = idp->top; layers = idp->layers; if (!p) { if (!(p = alloc_layer(idp))) return -1; layers = 1; } /* * Add a new layer to the top of the tree if the requested * id is larger than the currently allocated space. */ while ((layers < MAX_LEVEL) && (id >= (1 << (layers*IDTREE_BITS)))) { layers++; if (!p->count) continue; if (!(pn = alloc_layer(idp))) { /* * The allocation failed. If we built part of * the structure tear it down. */ for (pn = p; p && p != idp->top; pn = p) { p = p->ary[0]; pn->ary[0] = NULL; pn->bitmap = pn->count = 0; free_layer(idp, pn); } return -1; } pn->ary[0] = p; pn->count = 1; if (p->bitmap == IDTREE_FULL) set_bit(0, pn->bitmap); p = pn; } idp->top = p; idp->layers = layers; v = sub_alloc(idp, ptr, &id); if (v == -2) goto build_up; return(v); } static int sub_remove(struct idtree *idp, int shift, int id) { struct idtree_layer *p = idp->top; struct idtree_layer **pa[1+MAX_LEVEL]; struct idtree_layer ***paa = &pa[0]; int n; *paa = NULL; *++paa = &idp->top; while ((shift > 0) && p) { n = (id >> shift) & IDTREE_MASK; clear_bit(n, p->bitmap); *++paa = &p->ary[n]; p = p->ary[n]; shift -= IDTREE_BITS; } n = id & IDTREE_MASK; if (p != NULL && test_bit(n, p->bitmap)) { clear_bit(n, p->bitmap); p->ary[n] = NULL; while(*paa && ! --((**paa)->count)){ free_layer(idp, **paa); **paa-- = NULL; } if ( ! *paa ) idp->layers = 0; return 0; } return -1; } void *idtree_lookup(const struct idtree *idp, int id) { int n; struct idtree_layer *p; n = idp->layers * IDTREE_BITS; p = idp->top; /* * This tests to see if bits outside the current tree are * present. If so, tain't one of ours! */ if (n + IDTREE_BITS < 31 && (id & ~(~0 << MAX_ID_SHIFT)) >> (n + IDTREE_BITS)) return NULL; /* Mask off upper bits we don't use for the search. */ id &= MAX_ID_MASK; while (n >= IDTREE_BITS && p) { n -= IDTREE_BITS; p = p->ary[(id >> n) & IDTREE_MASK]; } return((void *)p); } bool idtree_remove(struct idtree *idp, int id) { struct idtree_layer *p; /* Mask off upper bits we don't use for the search. */ id &= MAX_ID_MASK; if (sub_remove(idp, (idp->layers - 1) * IDTREE_BITS, id) == -1) { return false; } if ( idp->top && idp->top->count == 1 && (idp->layers > 1) && idp->top->ary[0]) { /* We can drop a layer */ p = idp->top->ary[0]; idp->top->bitmap = idp->top->count = 0; free_layer(idp, idp->top); idp->top = p; --idp->layers; } while (idp->id_free_cnt >= IDTREE_FREE_MAX) { p = alloc_layer(idp); talloc_free(p); } return true; } struct idtree *idtree_new(void *mem_ctx) { return talloc_zero(mem_ctx, struct idtree); } int idtree_add(struct idtree *idp, const void *ptr, int limit) { int ret = idtree_get_new_above_int(idp, ptr, 0); if (ret > limit) { idtree_remove(idp, ret); return -1; } return ret; } int idtree_add_above(struct idtree *idp, const void *ptr, int starting_id, int limit) { int ret = idtree_get_new_above_int(idp, ptr, starting_id); if (ret > limit) { idtree_remove(idp, ret); return -1; } return ret; }