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This paper shows how to determine the basic shape of a planet, spinning on
its axis, using simple Newtonian physics and calculus. A planet's shape may be
determined from its mass M (kg), its polar radius r0 (m), and its rate of spin
ω (radians/s).

Details such as mountains are not considered, we assume that the planet
is locally �at. For calculating gravity, we assume that the planet's mass may
be modelled by a point-mass at its centre. This model is exact for spherical
objects, and practial for planets.

Consider a ball sitting somewhere on the surface of the planet. Two accel-
erations act upon the ball at that point: gravity ~g, and normal reaction ~n. The
sum ~c of these accelerations keeps the ball moving with the planet, in circular
motion about the axis.

~c = ~g + ~n

The normal reaction at a point on the surface is perpendicular to the surface.
We need only consider a cross-section of the planet, passing through the axis:
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We know the formulae for the acceleration ~g due to gravity, and the accel-
eration c needed to achieve circular motion:

~g = −G
M

R2
R̂

~c = −ω2~r

G = 6.67428×10−11m3kg−1s−1 is the gravitational constant, M is the mass
of the planet, ~R is the vector from the center of the planet (not used directly),

R is the magnitude of ~R, R̂ is the unit vector in the direction of ~R, ω is the rate
at which the planet is spinning (radians per second), and ~r is the perpendicular
vector from the axis of the planet. The gravity vector is directed toward the
centre of the planet. The circular motion vector is directed toward the nearest
point on the axis of the planet.

We can express the normal reaction in these terms:

~n = ~c− ~g

~n = G
M

R2
R̂− ω2~r

Consider a point on the surface x, y, using cartesian coordinates with origin
at the center of the planet, x-axis corresponding to the planet's equator and
y-axis to the planet's axis, where x ≥ 0 and y ≥ 0. We split the vectors into
their x and y components, and consider the magnitude R.

rx, ry = x, 0

Rx, Ry = x, y

R2 = x2 + y2

nx = G
M

R2

x

R
− ω2x

ny = G
M

R2

y

R

Now, considering the curve of the surface, it is perpendicular to the normal:

dy

dx
= −nx

ny
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dy

dx
=

(
ω2R3

GM
− 1

)
x

y

Let a = ω2

GM :

dy

dx
=

(
aR3 − 1

) x

y

This equation determines the curve of the surface, and can be integrated as
follows:

ydy =
(
aR3 − 1

)
xdx

dy2 =
(
aR3 − 1

)
dx2

Substitute X = x2, Y = y2, Z = X + Y = R2:

dY =
(
aZ

3
2 − 1

)
dX

d(Z −X) =
(
aZ

3
2 − 1

)
dX

dZ = aZ
3
2 dX

dX

dZ
=

1
a
Z−

3
2

X = −2
a
Z−

1
2 + k

x2 = − 2
aR

+ k

r2 = −2GM

ω2R
+ k

At the pole, R = r0 and r = 0, so we can �nd k:

k =
2GM

ω2r0

So we have r as a function of R:

r2 =
2GM

ω2

(
1
r0
− 1

R

)
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We can express x, y in terms of R, giving a parametric equation for the curve
of the planet's surface, which we can plot using a computer:

x, y = r,
√

R2 − r2

At the equator, r = R, so the equatorial radius r1 satis�es:

r2
1 =

2GM

ω2

(
1
r0
− 1

r1

)
This is a cubic in r1 which can be solved exactly, but I have not done so

here.
I wrote a computer program to draw planet shapes based on these formu-

lae, and to calculate the amount of bulge at the equator. Here is the picture
generated of Saturn, which has a visible bulge compared to the reference circle:

The values calculated for the bulges (equatorial diameter minus polar diam-
eter) of Earth and Saturn are a bit di�erent from what has been observed in
real life:

Earth: computed bulge: 21.89 km, actual bulge: 42.72 km.
Saturn: computed bulge: 8239.7 km, actual bulge: 11808 km.
The calculated values are not close enough to the actual values, so I think

I have made some mistake, or did not consider some signi�cant factor. Never-
theless, I think my method is the right approach.
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Here is a picture of the shape Saturn would have, if it were spinning 56%
faster than it really does, at the critical point.

Here is a picture of the shape Saturn would have, if it were spinning 59%
faster than it really does. The shape is no longer closed. Saturn could not spin
that fast and remain in one piece.

Here is the program I used, it is written in brace, my dialect of C:

#!/ lang /b
use b

c s t r usage [ ] =
"m r0 p [ s t ep s =10000]" ,
"mass polar−rad iu s spin−per iod " ,
"5 .9736 e24 6356800 86164.09 # Earth " ,
"5 .6869 e26 54364000 37050.56 # Saturn " ,
NULL
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num G = 6.67428 e−11 # m^3/kg/ s

Main ( )
num M, r0 , p , s , a , b , R2 , r2 , r , x , y , yp , xp , R, dR, r1 , s t ep s
s t ep s = 10000
Getargs (num, M, r0 , p )
ge ta rg s (num, s t ep s )
warn ("M=%g r0=%f p=%f " , M, r0 , p )
s = 2∗ pi /p

paper (600 , 400)
i n t max_wh = imax (w, h)
zoom ( (max_wh ∗ 0 . 6 ) / ( r0 ∗2) )
blue ( )
c i r c l e (0 , 0 , r0 )

b lack ( )
a = 2∗G∗M/( s ∗ s )
b = 1/ r0
x = 0 , y = r0 , yp = y , xp = 0
dR = r0 / s t ep s
f o r R=r0 ; R<r0 ∗2 ; R+=dR:

again R2 = R∗R
r2 = a ∗(b − 1/R)
i f r2 < −tinynum | | r2 > R2 + tinynum :

break
r2 = clamp ( r2 , 0 , R2)
r = sq r t ( r2 )
x = r
y = sq r t (R2 − r2 )
i f sd (x ) > w_2:

break
po int (x , y )
po int (−x , y )
po int (x , −y )
po int (−x , −y )
Paint ( )
i f xp && hypot (yp−y , xp−x ) > r0 / h / 2 :

R−=dR ; dR /= 2 ; R+=dR ; again
e i f xp && hypot (yp−y , xp−x ) < r0 / h / 8 :

R−=dR ; dR ∗= 2 ; R+=dR ; again
yp = y ; xp = x

r1 = hypot (x , y )
warn (" r1 ~= %f " , r1 )
warn (" e qua t o r i a l bulge = 2∗( r1−r0 ) = %f km" , 2∗( r1−r0 )/1000)
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